job-bot/extract_v2.py
2025-05-30 10:38:04 -07:00

87 lines
2.6 KiB
Python

from airflow import DAG
from airflow.decorators import task
from airflow.models import Variable
from datetime import datetime, date, timedelta
from pymongo import MongoClient
from jobspy import scrape_jobs
import pandas as pd
import yaml
import graypy
import logging
DEBUG = False
default_args = {
'owner': 'airflow',
'depends_on_past': False,
'email_on_failure': False,
'email_on_retry': False,
'retries': 1,
'retry_delay': timedelta(minutes=5),
}
# Configure logging
logger = logging.getLogger('JobBot')
logger.setLevel(logging.INFO)
# Configure graypy handler for GELF UDP
graylog_handler = graypy.GELFUDPHandler('graylog.localdomain', 12201)
graylog_handler.include_logger_name = True
logger.addHandler(graylog_handler)
def load_search_config(config_path):
with open(config_path, 'r') as file:
return yaml.safe_load(file)
def process_jobs(search_params):
print(f"Scraping jobs with parameters: {search_params['name']}")
jobs = scrape_jobs(**search_params['params'])
return jobs
def date_to_datetime(d):
if isinstance(d, date) and not isinstance(d, datetime):
return datetime.combine(d, datetime.min.time())
return d
with DAG(
'job_bot_api_dag',
default_args=default_args,
description='A DAG to fetch data from job-bot API and process it',
schedule='*/10 * * * *', # Every 10 minutes
start_date=datetime.now() - timedelta(days=1), # Changed to today-1 day
catchup=False,
max_active_runs=1,
tags=['job-bot', 'api'],
) as dag:
@task()
def fetch_jobs():
# Load configuration
config = load_search_config('search_criteria.yaml')
jobs = pd.DataFrame()
# Process each search configuration
for search in config['searches']:
try:
_jobs = process_jobs(search)
if len(_jobs) > 0:
# Apply filters from search configuration if they exist
if 'filter' in search:
filter_field = search['filter']['field']
exclude_list = search['filter']['exclude']
_jobs = _jobs[~_jobs[filter_field].str.contains('|'.join(exclude_list), case=False, na=False)]
jobs = pd.concat([jobs, _jobs])
except Exception as e:
print(f"Error processing search '{search['name']}': {str(e)}")
continue
# Basic stats
print(f"Found {len(jobs)} jobs")
# TaskFlow dependencies
api_results = fetch_jobs()
if __name__ == "__main__":
dag.test()